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It is shown that spiral waves may possess many isolated point eigenvalues that appear near branch points of
the linear dispersion relation. These eigenvalues are created by the same mechanism that leads to infinitely
many bound states for selfadjoint Schrödinger operators with sufficiently weakly decaying long-range poten-
tials. For spirals, the weak decay of the potential is due to the curvature effects on the profile of the spiral in
an intermediate spatial range that separates the spiral core from the far field.
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I. INTRODUCTION

Spiral waves have been observed in various biological,
chemical, and physical systems �1�, as well as in numerical
simulations of reaction-diffusion systems and complex
Ginzburg-Landau equations. Part of their fascination is due
to the intriguing instabilities they exhibit; For instance, spi-
rals may begin to meander or to drift, a scenario that has
been observed in the Belousov-Zhabotinsky reaction �2�,
during fibrillations in cardiac tissue �3�, and in the oxidation
of carbon monoxide on platinum surfaces �4�, and that has
been attributed to a supercritical Hopf bifurcation �5�. Of
particular relevance to this paper is spiral breakup, where the
core �6� or the far field �7,8� of a spiral wave breaks up into
a turbulent region with complex spatiotemporal behavior.
Other interesting instabilities are spatiotemporal period-
doubling bifurcations, which have been observed in the
Belousov-Zhabotinsky reaction �9� and in numerical simula-
tions �10�, and transverse instabilities �11� that are character-
ized by a degenerate dispersion relation between asymptotic
wavelength and wave speed.

Among the challenges for theoretical studies of spirals are
the tasks of investigating the nature of the above instabilities
and making predictions about the patterns emerging from
them. The first step toward these goals is to understand spiral
spectra as they inform us about the stability or instability of
a spiral and, through the associated eigenmodes, about the
spatiotemporal behavior associated with unstable modes.
Spiral spectra are composed of two disjoint sets; a discrete
part consisting of isolated point eigenvalues and a continu-
ous part consisting of curves �for planar spirals� or of densely
distributed eigenvalues �for spirals on large disks�. Isolated
point eigenvalues depend genuinely on the spiral in the sense
that their location is determined by the spiral shape between
the core and the far field; in general, their computation there-
fore requires knowledge of the entire two-dimensional �2D�
spiral. In contrast, the continuous part of the spectrum de-

pends only on the asymptotic one-dimensional �1D� profile
of the spiral in the far field. It is also known, for instance
from Ref. �12�, that point eigenvalues and absolute instabili-
ties caused by the continuous part of the spectrum produce
very different scaling laws and bifurcation diagrams near on-
set. It is therefore desirable to develop analytical criteria that
allow us to decide whether spirals destabilize due to discrete
or continuous parts of their spectrum.

In this paper, we show that spiral spectra may contain
many isolated point eigenvalues whose approximate location
can be predicted from the asymptotic wave trains upon ac-
counting properly for curvature effects in the region between
the core and the far field. Specifically, we show that the
linearization about a planar spiral wave near double roots �or
branch points� of its linear dispersion relation can be reduced
to a one-dimensional Schrödinger operator with a complex
long-range potential. Depending on a sign condition on its
coefficients, this Schrödinger operator has infinitely many
bound states which correspond to isolated point eigenvalues
of the spiral. These eigenvalues can shift the onset to insta-
bility, and our result predicts precisely when such a shift
occurs.

We apply our analyses to a modified FitzHugh-Nagumo
equation and the complex Ginzburg-Landau equation. Our
theoretical results turn out to be in excellent agreement with
the recent spectral computations by Barkley and Wheeler
�13� for the modified FitzHugh-Nagumo equation, which in
fact motivated our study. Furthermore, we show that spiral
waves in the complex Ginzburg-Landau equation can pos-
sess discrete eigenvalues generated by curvature effects and
that these eigenvalues lead to a shift of the onset of spiral
instability into the regime where the asymptotic wave trains
are only convectively unstable.

II. SPIRAL SPECTRA

To set the scene, we assume that u*�r ,�−�t�, written in
polar coordinates, is a rigidly-rotating Archimedean spiral
wave with a nonzero angular velocity � of the reaction-
diffusion system,
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ut = D�u + f�u�, u � Rn, �1�

where �x ,y� lies in R2 or in large disks BR�0� of radius R
�1 with, say, Neumann boundary conditions. We assume
that the diffusion matrix D is invertible but emphasize that
our analysis applies, under certain conditions, to systems for
which some of the diffusion coefficients vanish �see Eq. �20�
below for an example�. A typical spiral wave is shown in Fig.
1. In particular, the asymptotic profile of a spiral in
the far field away from its core is locally of the form
u0��r+�−�t�, where u0 is 2�-periodic in its argument; we
refer to Eqs. �7� and �8� for the precise far-field asymptotics
of u*. The function u0��x−�t� is a planar wave that satisfies
Eq. �1� on R2. Linearizing Eq. �1� about this planar wave
gives

wt = D�w + fu„u0��x − �t�…w, �x,y� � R2. �2�

In the following, we focus on longitudinal instabilities of the
wave train which are captured by the ansatz,

w = e�t+	xw0��x − �t;	� ,

where �, 	�C, and w0�
 ;	� is 2�-periodic in 
. Substitu-
tion into Eq. �2� yields the linear dispersion relation �*�	� of
the wave train in the propagation direction and its group
velocity cg= �−d�* /d	�	=0�R in the laboratory frame. As
we shall see below, the linear dispersion relation in the trans-
verse direction is not relevant to our spectral analysis, but
will nevertheless affect the spatial spiral asymptotics given in
Eqs. �7� and �8� below. We therefore also introduce the an-
satz

w = e�t+	yw0
���x − �t;	� �3�

with �, 	�C and, w0
��
 ;	� being 2�-periodic in 
, to get

the linear dispersion relation �*
��	�=d�	2+O�	3� in the

transverse direction.
To relate these quantities to the spectrum of the spiral, we

shall work in the corotating frame ���+�t in which Eq.
�1� becomes

ut = D�u + ���u + f�u� . �4�

The eigenvalue problem associated with the spiral u* is then
given by

�u = D�u + ���u + fu„u*�r,��…u . �5�

We now briefly summarize the results established in Refs.
�14,15�. Throughout, we reserve the term point eigenvalue to
denote eigenvalues with finite multiplicity that are isolated
uniformly in the disk radius R.

On R2, spiral spectra consist of point eigenvalues, among
them eigenvalues at 0 and ±i� which are enforced by the
rotation and translation symmetry of the plane, and the es-
sential spectrum �ess, which is bounded by the linear disper-
sion curves �=�*�i��+i�� with ��R and ��Z �see Fig.
2�i��. The vertical periodicity with period � of the essential
spectrum in the complex plane arises since the essential
spectrum is determined entirely by the limiting eigenvalue
problem for r→
; In this limit, the diffusion operator � is
replaced by �rr, and the eigenvalue problem �5� acquires an
additional symmetry due to the term ��� which acts by re-
placing the eigenmodes w and the spectrum � by w exp�i���
and �+i��, respectively.

On the other hand, on disks BR�0� of radius R, the spiral
spectra converge as R→
 to the union of the absolute spec-
trum �abs and point eigenvalues �see Fig. 2�ii��. The absolute
spectrum consists of all elements ��C for which the equa-

FIG. 1. �Color online� Contour plots of �2D� spiral waves of the
FitzHugh-Nagumo equation �20� computed on squares with the
Neumann boundary conditions are shown. The left plot shows a
rigidly rotating spiral, while the right plot shows a spiral that is
breaking up in the far field.

FIG. 2. �Color online� �i� Spectra of spirals on R2. �ii� Spectra of
spirals on disks BR�0� with R�1. See the text for details.
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tion �=�*�	�+i�� has two roots 	1 and 	2 with equal real
parts that have the correct Morse index �see Refs. �14,15� for
details�. It is therefore determined solely by the asymptotic
one-dimensional wave trains and again vertically periodic in
the complex �-plane with the period �. The edges of the
absolute spectrum are given by branch points �bp of the lin-
ear dispersion relation where, by definition, the two roots 	1
and 	2 become equal to each other to form a double root of
�*�	�. In other words, �bp=�*�	1�+i�� and d�* /d	�	1�=0.
The absolute spectrum itself is not a spectrum, but each of its
elements is approximated by infinitely many eigenvalues of
�5� as R→
; the convergence toward the absolute spectrum
is algebraic of the order 1 /R in R. While the absolute spec-
trum does not depend on the boundary conditions, the actual
eigenvalues near it will. The point eigenvalues, which make
up the remaining part of the spectrum, have limits as
R→
, which are approached exponentially fast of the order
exp�−�R� in R, and these limiting elements contain all of the
eigenvalues and resonance poles of the spiral on R2 plus
possibly additional eigenvalues induced by the boundary
conditions.

The theoretical predictions for spiral spectra on large
disks were recently corroborated by numerical computations,
summarized in Fig. 3, by Barkley and Wheeler �13�, which
confirm in particular the clustering of eigenvalues along the
absolute spectrum. In addition, however, their computations
show that certain point eigenvalues appear to be intimately
linked to the absolute spectrum by aligning themselves along
rays that emerge from the edges of the absolute spectrum.
Visible in Fig. 3�ii�, this phenomenon seems to occur along

each branch of the absolute spectrum �recall that the absolute
spectrum is vertically periodic with period ��. These obser-
vations are surprising as point eigenvalues are determined by
the shape of the spiral in the region between the core and far
field rather than by the far field itself.

In this paper, we explain the occurrence of these point
eigenvalues in terms of curvature corrections to the spiral
shape in an intermediate spatial regime between the core and
far field which manifest themselves as a long-range potential
in Eq. �5�. Our analysis provides criteria which determine
whether instabilities such as core or far-field breakup are
caused by the absolute spectrum or by point eigenvalues aris-
ing through curvature effects. We shall focus on spirals on R2

since point eigenvalues persist on disks of finite but large
radius R, independent of the boundary conditions.

III. REDUCTION TO SCHRÖDINGER EQUATIONS

We now reduce the eigenvalue problem of a planar spiral
wave near branch points to a non-self-adjoint Schrödinger
operator with a complex long-range potential. The result is
given toward the end of this section in Eq. �13�.

It will be convenient to write the steady-state equation for
Eq. �4� on R2 in polar coordinates,

D�urr +
ur

r
+

u��

r2 � + �u� + f�u� = 0. �6�

To capture the point eigenvalues, we need to expand the
spiral wave in the far field as r→
. Using the Archimedean
coordinate

FIG. 3. �Color online� Spiral spectra computed by Barkley and Wheeler �13� for the FitzHugh-Nagumo equation �20� near core �i� and
far-field �ii� breakup on disks of a radius R=20,40,80, indicated by different symbols and colors �reproduced with permission�. The absolute
and essential spectra shown in the above plots were previously computed in Ref. �14�.
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 = � + �r + �1 log r , �7�

where the constant �1 is to be determined, the spiral wave
u*�r ,
� has, for sufficiently large r�1, the expansion

u*�r,
� = u0�
� +
1

r
u1�
� + O�1/r2� ,

u1�
� = bu0��
� + �1��u0�
� +
�

2
�		w0

��
;0� . �8�

Here, �1=�d� /cg, w0
� has been introduced in Eq. �3�, ��u0

refers to the derivative of the wave train profile with respect
to its spatial wave number �, and b�R is a constant that is
determined by a compatibility condition at order 1 /r2. The
expansion �8� can be verified by substituting it into Eq. �6�
and expanding in powers of 1 /r. Writing the eigenvalue
problem �5� as a first-order system in the Archimedean vari-
ables, we obtain

ur = − �� +
�1

r
	u
 + v ,

vr = −
u



r2 + D−1�� − ��
 − fu„u*�r,
�…�u

− �� +
�1

r
	v
 −

v
r

, �9�

which, using the expansion �8�, is of the form

Ur = �A0��� +
1

r
A1��� + O� 1

r2	�U, U = �u

v
	 , �10�

where the operators Aj act on functions U= �u ,v� that are
2�-periodic in 
. Since all eigenmodes are necessarily
smooth in the 
-direction, the u

 /r2 terms in Eq. �9� can be
considered as higher-order corrections that do not cause any
regularity problems.

Upon taking the limit r→
 in Eqs. �9� and �10�, we re-
cover the eigenvalue problem of the asymptotic wave train.
In particular, a direct computation shows that 	 is an eigen-
value of A0���, given by

A0���

= � − ��
 1

D−1�� − ��
 − fu„u0�
�…� − ��

	 ,

if, and only if, it is a root of the linear dispersion of the
asymptotic wave train, i.e., if � and 	 are related via
�=�*�	�.

Suppose now that �bp�C is a branch point of the linear
dispersion relation �*�	� of the spiral wave with double roots
	1=	2. Interpreted in the context of Eq. �10�, this assumption
means that A0��bp� has a double eigenvalue 	1=	2. We shall
assume that the double eigenvalue 	1,2 has geometric multi-
plicity one, which is the generic case.

Our goal is now to reduce Eq. �10� to a simpler scalar
equation for � near �bp. Thus, we employ the perturbation
ansatz

U�r� = e	1rV�r�, � = �bp + �, 	 = 	1 + V ,

so that Eq. �10� becomes

Vr = �A0 − 	1 +
1

r
A1 + O� 1

r2	�V , �11�

where A0−	1 evaluated at �=0 now has a double eigenvalue
at V=0 with geometric multiplicity one. In particular, we can
apply a center-manifold theory to Eq. �11� for � and 1/r
close to zero, which shows that we can reduce Eq. �11� to an
equation of the form

Wr = �� 0 1

�/d 0
	 +

1

r
B1 + O� 1

r2	�W , �12�

where W= �W1 ,W2��C2, for a certain complex coefficient
d�C and a complex 2�2 matrix B1. The components W1
and W2 of W can be thought of as being the amplitudes of the
eigenmode and the generalized eigenmode, respectively, as-
sociated with the double eigenvalue V=0 of the right-hand
side of Eq. �11� at �=0.

Equation �12� is equivalent to a second-order equation for
W1. Upon removing the �rW1 term in this second-order equa-
tion by an appropriate coordinate transformation, we finally
arrive at the scalar non-selfadjoint Schrödinger equation,

dwrr + �a

r
+ O� 1

r2	�w = �w, r � �R0,
� , �13�

for the variable w, which corresponds to the transformed W1.
Here, R0�1 is determined by the region of validity of the
center-manifold reduction, while the coefficient a�C de-
scribing the strength of the complex long-range potential in
Eq. �13� is determined from the entries of the matrix B1 in
Eq. �12�.

Equation �13� describes the eigenvalue problem of the
spiral wave in the far field. To obtain genuine eigenmodes of
the spiral wave, we need to match its solutions to the eigen-
value problem in the core region. We have carried out this
matching process in Ref. �15� for fronts in reaction-diffusion
equations and summarized the necessary modifications for
spirals in Ref. �14�. Therefore, we shall omit the details here.
The result of the matching with the core is an effective
boundary condition for Eq. �13� at r=R0 of the form

s1���w�R0� + s2���wr�R0� = 0, �14�

which provides the correct coupling to the eigenvalue prob-
lem near the spiral core. The complex-valued functions s1
and s2 depend smoothly on �, and satisfy �s1�2+ �s2�2�0 near
�=0.

In summary, to determine the spectrum of the spiral wave
near the branch point �bp, it suffices to find the spectrum of
the Schrödinger operator given in Eq. �13� subject to the
boundary condition �14�. Before turning to the point spec-
trum of �13�–�14�, we shall discuss the interpretation of the
coefficients a and d.

The continuous spectrum of �13� is given by the ray
�=−d�2 with ��R as it is determined entirely by the lim-
iting problem at r=
. By construction, this spectrum must
coincide with the absolute spectrum of the spiral wave near
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the branch point �bp. The algorithm for the computation of
the absolute spectrum of spirals outlined in Ref. �14� there-
fore allows us to calculate d numerically.

The coefficient a is determined as follows. Since
d�1/r� /dr=O�1/r2�, we can treat the variable 1 /r in Eq. �11�
for r�1 as a slowly varying parameter. In particular, to com-
pute the reduced vector field on the center manifold of Eq.
�11� to leading order, we can simply consider 1 /r as a small
parameter, rather than treating Eq. �11� as a genuinely non-
autonomous system. This observation allows us to make the
following argument. Truncating Eq. �13� at order 1 /r and
rewriting the resulting equation as a first-order system yields,

W̃r = 
 0 1

1

d
�� −

a

r
	 0 �W̃, W̃ = �w,wr� . �15�

The coefficient matrix has a double eigenvalue precisely
when �=a /r. Thus, upon reversing the coordinate transfor-
mations that led from Eq. �9� to Eq. �15�, we see that the
coefficient matrix on the right-hand side of Eq. �9�, also trun-
cated formally at order 1 /r, has a double eigenvalue pre-
cisely when � is equal to �bp+a /r. Since the truncated coef-
ficient matrix, acting on 2�-periodic functions in 
, is
explicitly given by

A0��� +
1

r
A1��� =
 − �� +

�1

r
	�
 1

D−1�� − ��
 − fu„u0�
� + u1�
�/r…� − �� +
�1

r
	�

� ,

and since we assumed that we know �bp, we can therefore
compute the value of � for which A0+A1 /r has a double
eigenvalue numerically as a function of 1/r; from these val-
ues and the expansion �=�bp+a /r, we then obtain the coef-
ficient a.

IV. SPECTRA OF NON-SELFADJOINT SCHRÖDINGER
EQUATIONS

We now discuss the spectrum of �13�–�14�. When

� ª arg�a

d
	 �16�

satisfies ����� /2, the Schrödinger equation �13�–�14� has
infinitely many point eigenvalues, given approximately by

�n =
a2

4dn2�1 + O�1

n
	�, n � 1, n � N , �17�

that accumulate at the origin along the ray,

arg � = � = arg�a2

d
	 �18�

�see Fig. 4�i��. The point eigenvalues depend on the bound-
ary conditions �14� only through the higher-order term
O�1/n�. In contrast, when ����� /2, then �13�–�14� does not
have any point eigenvalues near the origin. At the transition
point �= ±� /2, the eigenvalues disappear through the es-
sential spectrum by moving to the “wrong” Riemann sheet of
the dispersion relation, thus corresponding to resonance
poles with exponentially increasing eigenfunctions. Before
we continue our discussion, we remark that both cases ���
�� /2 and ����� /2 do occur, and we refer to §V below for
examples.

We now provide arguments to support our claims. If the
ratios a /d and s1 /s2 are real, then �13�–�14� is self-adjoint,
and �16, Thm. XIII.6�a�� readily shows that the above di-
chotomy holds true. In the complex non-self-adjoint case,
consider first the truncated Schrödinger equation

wrr +
a

dr
w =

�2

4
w,

�2

4
=

�

d
, r � �R0,
� . �19�

Its unique bounded solution w�r� is the Whittaker function
Wa/�d��,1/2��r� which, according to Ref. �17, �4.4.18� and
�4.4.33��, admits the expansion

w�R0� = R0
1/4 cos��4aR0

d
−

a�

�d
+

�

4
	�1 + O����1/2��

at r=R0. Substituting w�R0� and its derivative wr�R0� into the
boundary condition �14�, we see that Eq. �14� is met pro-

FIG. 4. �Color online� The complex �-plane is shown; �i� When
�=arg�a /d� satisfies ����� /2, the Schrödinger equation �13� has
infinitely many bound states that accumulate on the origin along the
ray arg �=�=arg�a2 /d�. �ii� Numerically computed spectra of �19�
for d=1 and different values of � on the interval �10,210� with
Dirichlet and Neumann conditions at the left and right endpoints,
respectively. Point eigenvalues accumulate approximately along the
ray arg �=2�.
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vided �=�n, where �n=a /nd+O�1/n2� for integers n�1.
Note that the actual values of s1 and s2 enter only at the
higher order. Reverting back to the variable �, we obtain the
asymptotics �17�, as claimed. Lastly, using variation-of-
parameters and �18, Thm. 11.1 in §6� for the rescaled spatial
variable s= ���r in the limit �→0, this analysis can be ex-
tended to the full problem �13� provided the coefficients in
Eq. �13� are analytic in r �the arguments in Ref. �18� require
a holomorphic extension to complex r�. We do not currently
have mathematical proofs in the case of nonanalytic coeffi-
cients, but remark that all of the numerical simulations with
nonanalytic coefficients that we performed have produced
results consistent with the claimed alignment with arg �
=�.

Hence, the results derived in this section indicate that spi-
ral waves will have many point eigenvalues to the right of
branch points of the linear dispersion relation whenever the
angles � and � are smaller than � /2.

One standard criterion for the onset of absolute instability
of spirals is the saddle-point condition derived in Refs.
�19,20�. This criterion states that spiral waves destabilize
when the wave trains emitted by the spiral waves become
absolutely unstable which, in turn, occurs when a branch
point �bp of their linear dispersion relation, given by
�bp=�*�	� with d�* /d	�	�=0, crosses the imaginary axis.
Our results show that point eigenvalues caused by curvature
effects may destabilize spirals prior to branch points crossing
and that the occurrence of these eigenvalues can be predicted
from the asymptotic profile of the spiral.

V. APPLICATIONS

First, we compare the prediction in Eq. �18� with the spec-
tral computations by Barkley and Wheeler �13�, reproduced
in Fig. 3, for the modified FitzHugh-Nagumo equation,

ut = �u −
1

�
u�u − 1��u −

b + v
a

	 ,

vt = f�u� − v , �20�

with f�u� as in Ref. �6� and parameters as in Ref.
�14, �14–15��. Note that our results are applicable to Eq. �20�
even though one of its diffusion coefficients vanishes. In-
deed, the v-component of the eigenvalue problem associated
with a spiral wave �u* ,v*� of Eq. �20� is given in the coro-
tating frame by,

�� + 1 − ����v = fu�u*�u .

The operator on the left-hand side can be inverted for each �
with Re ��−1 and substituted into the equation for u, result-
ing in a nonlocal eigenvalue problem for u with a nonzero
diffusion coefficient. The remaining analysis proceeds then
exactly as before.

The absolute spectra of the spiral wave of Eq. �20� have
been previously computed in Ref. �14� which allows us to
compute d, while the coefficient a can be calculated as out-
lined at the end of Sec. III using the boundary-value problem
solver AUTO �21�. Substitution into Eq. �18� gives a predic-

tion for the asymptotic angle of the ray, emanating from the
branch point, along which the eigenvalues in Fig. 3 to the
right of the absolute spectrum should align themselves. We
also estimated this angle from Fig. 3 using the branch point
at the edge of the absolute spectrum as the origin. The re-
sulting values are

Breakup at Core Far Field

arg�a /d� computed with AUTO 40° 44°

arg �n extracted from Ref. �13� 48° 45°

which agree quite reasonably given that there are only one or
two point eigenvalues visible in Fig. 3.

Next, we consider spiral waves of the planar complex
Ginzburg-Landau equation,

At = �1 + i���A + A − �1 + i���A�2A , �21�

on BR�0� with Neumann boundary conditions. Spiral waves
of Eq. �21� satisfy an ordinary differential equation and can
therefore be computed using AUTO.

We have calculated the curve in the �� ,��-space along
which the absolute spectrum of the asymptotic wave trains
crosses the imaginary axis, leading to an absolute instability.
This curve, further divided into the four curve segments
�1 , . . . ,�4 which will be explained shortly, is shown in Fig.
5. Our computations show that the absolute spectrum crosses
at a branch point for each �� ,�� on one of the curve seg-
ments �1, �2, and �3, thus confirming the results in Ref. �20�.
However, for �� ,�� on the curve segment �1, the spiral wave
is already unstable due to point eigenvalues which have
crossed the imaginary axis prior to the branch point; our
numerical computations show that both � from Eq. �16� and
� from Eq. �18� are smaller than � /2 for parameters on �1.
We computed the point eigenvalues that arise due to our
results in §III and §IV for �� ,��= �0.54,4.2���1 and plot-
ted them in Fig. 6. Along the curve �2, the point eigenvalues
are also present but lie to the left of the imaginary axis since
the angle � from Eq. �18� is larger than � /2. Lastly, along
the curve segment �3, the angle � is larger than � /2 so that
there are no point eigenvalues emerging from the branch
point of the linear dispersion relation. Thus, in summary, our

FIG. 5. �Color online� The solid curve, shown in the
�� ,��-plane and divided into curve segments � j, is the absolute
instability limit of the wave trains selected by spiral waves of the
complex Ginzburg-Landau equation. The wave trains are absolutely
unstable below the solid curve and convectively unstable above it.
See the text for further details.
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results show that the stability region for spiral waves in the
complex Ginzburg-Landau equation is smaller than that pre-
dicted by the absolute spectrum �see Fig. 7 for a schematic
illustration�.

For completeness, we point out that along the curve seg-
ment �4 the absolute spectrum crosses the imaginary axis
away from branch points. In fact, the linear dispersion rela-
tion of the spiral does not have any branch points with the
correct Morse index, and the criterion given in Ref. �20�
therefore fails to predict the correct onset of instability.

VI. CONCLUSIONS

We showed that the linearization about spiral waves near
branch points can be reduced to a non-selfadjoint
Schrödinger operator with a complex long-range potential
which accounts for curvature effects and decays algebra-
ically like 1/r in the radius r. The spectral properties of the
Schrödinger operator are characterized by two complex co-
efficients a and d. Based on this reduction, we have provided
theoretical evidence that spiral spectra contain isolated point
eigenvalues near branch points whenever the angle �=arg

�a /d� has a modulus less than � /2. The number of these
eigenvalues increases as the domain size increases. Further-
more, if the angle �=arg �a2 /d� has modulus less than � /2,
then these point eigenvalues destabilize the spiral prior to an
absolute instability. It is worthwhile to mention that branch
points of spiral waves are periodic in the imaginary direction
with period given by the angular velocity �; eigenvalues will
emerge simultaneously from all these periodically spaced
branch points.

Our results have the following consequence. A standard
test for absolute instabilities of spirals is the branch point or
saddle-point criterion due to Refs. �19,20� which states that
absolute instabilities of spirals occur whenever certain
branch points of their linear dispersion relation cross the
imaginary axis. As shown in this paper, point eigenvalues
emerging from branch points may destabilize spirals prior to
the branch points crossing. The location of these eigenvalues
can be predicted from the angles � and � through the coef-
ficients a and d using only the asymptotic 1D profile of the
spiral. We showed that this instability scenario occurs for a
modified FitzHugh-Nagumo equation and the complex
Ginzburg-Landau equation.
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